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The stability of a decelerating boundary-layer flow is investigated experimentally 
and numerically. Experimentally, a flat plate having a Blasius boundary layer is 
decelerated in an 18 m towing tank. The boundary layer becomes unstable to 
two-dimensional waves, which break down into three-dimensional patterns, hairpin 
vortices, and finally turbulent bursts when the vortices lift off the wall. The unsteady 
boundary-layer equations are solved numerically to generate instantaneous velocity 
profiles for a range of boundary and initial conditions. A quasi-steady approximation 
is invoked and the stability of local velocity profiles is determined by solving the 
Orr-Sommerfeld equation using Chebyshev matrix methods. Comparisons are made 
between the numerical predictions and the experimentally observed instabilities. 

1. Introduction 
The classical vehicle for studying shear-flow transition to turbulence consists of a 

uniform steady flow toward the leading edge of a fixed flat plate. Somewhat 
downstream of the leading edge a Blasius boundary layer develops. I n  various stages 
and in various sequences (to be detailed below) this Blasius layer undergoes 
small-amplitude instability, nonlinear development and transition to turbulence as 
the displacement-thickness Reynolds number R,, increases (Klebanoff, Tidstrom & 
Sargent 1962). In  effect, R,, measures the distance from the leading edge of the plate. 

Linearized stability theory can be applied to Blasius profiles treated as locally 
parallel flows (Lin 1955; Drazin & Reid 1981). Squire’s (1933) theorem shows that 
two-dimensional travelling waves, Tollmien-Schlichting waves, are the most 
dangerous for instability and become unstable when R,, exceeds about 520 for long 
waves having downstream wavenumber u* = 0.30 (Jordinson 1970). When the above 
Orr-Sommerfeld theory is modified to take account of non-parallel effects in the 
boundary layer, the critical R,, is reduced to about 420 (Saric & Nayfeh 1975). 
However, as soon as nonlinear effects are allowed, three-dimensional disturbances can 
no longer be excluded. 

Observations in experiments having ‘natural ’ transition show that clean two- 
dimensional waves are rarely attainable ; rather three-dimensional structure is 
immediately seen. Efforts to ‘control’ the disturbances have led to the introduction 
of vibrating ribbons (Klebanoff et al. 1962) oscillating in ostensibly two-dimensional 
motions. Although these ribbons are introduced to develop two-dimensional structure, 
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clear three-dimensional fluid motions are still seen. Longitudinal strips of tape have 
subsequently been introduced to a t  least fix the spatial structure of this three- 
dimensional flow (Klebanoff et al. 1962). Given the three-dimensional character of the 
flow, the road to transition involves amplification of the three-dimensionality, 
development of ‘ hairpin ’ vortices and finally the ‘ bursts ’ of turbulence. 

The difficulty in the attainment of purely two-dimensional disturbances and the 
seeming simultaneous occurrence of both two- and three-dimensional waves has led 
to several recent attempts a t  wave-interaction theories (Craik 1971, 1980 ; Nayfeh 
& Bozatli 1979). Here Tollmien-Schlichting waves and oblique waves are sought that  
can lead, through weakly nonlinear interactions, to  resonant-like behaviour that 
selects the observed structure prior to bursting. The selection of t,hree-dimensional 
structure must thus overcome the higher growth rates (Squire’s theorem) of the 
Tollmien-Schlichting waves. Each of these analyses models certain features of the 
early transition process, but not one is completely satisfactory.t Finally, there seems 
to be no theory that is yet capable of the prediction of the hairpin vortices, although 
there is substantial agreement that intensification of longitudinal vorticity gives rise 
to locally inflexional (unsteady and three-dimensional) velocity profiles (Stuart 1965). 
These profiles seemingly break down (Klebanoff et al. 1962), giving small (spatial) 
scale features associated with the burst. 

An alternative vehicle for the study of the transition process is the decelerating-plate 
experiment (Pales 1955; Hegarty 1958; Davis & Gad-el-Hak 1981). Here a plate of 
length L moves steadily normal to  its leading edge ; L is short enough that the Blasius 
layer remains laminar along its full length. At time t = 0 the plate is decelerated from 
a constant initial speed U, to  a new constant final speed U,.  Flow visualization 
seemingly shows that a sequence of two-dimensional structures, three-dimensional 
structures, hairpin vortices and then turbulent bursts results. When the deceleration 
takes place, the instantaneous velocity profiles are inflexional. If the inviscid 
instability associated with the instantaneous inflexion point has large enough growth 
rate, then there is an instability which will cause two-dimensional waves to  grow in 
the unsteady flow (Drazin & Reid 1981). Subsequently there is a breakdown (perhaps 
a new instability of the two-dimensional structure) into three dimensions, an 
intensification of the three-dimensional structure, the development of hairpin 
vortices and then turbulent bursts. 

The deceleration experiment differs from the fixed-plate experiment in several 
respects. First, given the inflexional character of the initial instability, the two- 
dimensional waves would have substantially larger growth rates than their Tollmien- 
Schlichting counterparts (Drazin & Reid 1981). Hence there may develop a ‘clean’, 
strongly two-dimensional wave field during the initial stages of the transition process. 
This contrasts with the mixed two-dimensional-three-dimensional field for the 
fixed-plate experiment (Anders & Blackwelder 1979). Careful point measurements are 
required to determine whether this is the case. If this is the case, i t  suggests the study 
of this instability in order to determine the mechanism and characteristics of the 
development of three-dimensionality. The isolation of this problem is one of the main 
advantages of the deceleration experiment over the fixed-plate experiment. If this 
picture is correct and there is a well-defined transition from laminar two-dimensional 
waves to laminar three-dimensional waves through an instability process (Orszag & 
Patera 1983), one has identified a major link in the transition process. An understanding 

t Orszag & Patera (1983) have shown tha t  a pure two-dimensional structure is prone to  strong 
three-dimensional instabilities. 
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of this instability allows one to contemplate means of interfering with the process 
to delay transition or reinforcing the process to foster transition. It gives one a handle 
in examining the subsequent evolution to hairpin vortices, since these might be 
examined through the nonlinear evolution of the three-dimensional structure. I n  
summary, the deceleration experiment might be one that clearly separates two- 
dimensional structures from three-dimensional ones and allows analysis of the change 
from one to  the other. 

The present investigation was undertaken to address some of the questions raised 
above. Experimental and numerical investigations were carried out to determine the 
mechanics of transition on a decelerating flat plate. A flat plate was towed in the Flow 
Research 18 m towing tank. Visualization and probe measurement techniques were 
used to  study the different instabilities resulting from decelerating the plate. The 
unsteady boundary -layer equations were solved numerically to generate instantaneous 
velocity profiles for a range of boundary and initial conditions. The stability of such 
profiles was determined by solving the Orr-Sommerfeld equations using Chebyshev 
matrix methods. 

2. Experimental equipment and procedure 
2.1. Towing-tank system 

The 18 m long, 1.2 m wide and 0.9 m deep towing tank and associated equipment 
have been described by Gad-el-Hak, Blackwelder & Riley (1981). The flat plate was 
rigidly mounted under a carriage that rides on two tracks mounted on top of the 
towing tank. During towing, the carriage was supported by an oil film which insured 
a vibrationless tow, so that the flow field had an equivalent freestream turbulence 
of about 0.1 yo. The carriage was towed with two cables driven through a reduction 
gear by a 1.5 h.p. Boston Ratiotrol motor. The towing speed was regulated within 
an accuracy of 0.1 yo. The main frame supporting the tank could be tilted and levelled 
by adjusting four screw jacks. This feature was essential for smooth operation of the 
carriage, whose tracks are supported by the main frame. The towing tank was 
designed so that flow visualization can be made from the top, sides, bottom and ends. 
The bottom and sidewalls are made of 19 mm thick plate glass with optical quality. 
The endwalls are made of 38 mm thick Plexiglas. 

2.2. Model and test conditions 

A modularly designed flat plate was built for the present experiment. Figure 1 is a 
schematic of the plate, which is 2.7 m long and 1.1 m wide. The working surface is 
made of Plexiglas and contains two dye slots, each with four separate compartments. 
The working surface is placed on a sheet of 6 mm Plexiglas that is bonded to a 13 mm 
honeycomb. The NOMEX honeycomb, covered on the bottom side with fibreglass 
resin, provides buoyancy as well as bending strength. A system of cables and pulleys 
on the bottom surface insures the flatness of the working surface to  within 0.2 mm. 

Separation and premature transition a t  the leading edge is prevented by using a 
12: 1 elliptic nose and an adjustable lifting flap a t  the trailing edge. I n  the range of 
towing speeds of 20-60 cm/s, a Blasius laminar boundary layer is generated on the 
working surface. 

Uniform deceleration was attained by decreasing the voltage to the Ratiotrol 
motor. The initial and final speeds were changed in the range of 60-0 cm/s and the 
deceleration rate varied in the range 1 4 0  cm/s2. 
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Elliptic nose 
FIQURE 1 .  Schematic of the flat plate and coordinate system. 

2.3. Flow visualization 

The transition events were made visible by novel techniques which utilized fluorescent 
dye, i.e. dye which is visible only when excited by a strong light source of the 
appropriate wavelength (Gad-el-Hak, Blackwelder & Riley 1979). This provided an 
extra degree of freedom in observing the flow because both the dye and light location 
could be controlled. A 5 W argon laser (Spectra Physics, Model 164) was used with 
a cylindrical lens to produce a sheet of light that  could be projected perpendicular 
to each of the three axes as required. The light sheets were approximately 1 mm thick, 
which was sufficient to resolve the large structure within the transitional and 
turbulent regions. 

Two different methods of dye injection were employed. I n  the first, a dye sheet 
seeped into the laminar boundary layer through either of two 0.15 mm wide, 30 cm 
long spanwise slots located 40 ern and 75 ern downstream of the leading edge. The 
slots were milled a t  a 4 5 O  angle inclined towards the trailing edge to minimize flow 
disturbance. Each slot was divided into four separate sections, each with its own dye 
source, so the spanwise mixing and diffusion of turbulent fluid could be studied. The 
dye remained on the plate surface until an upward motion caused it to lift. I n  the 
second, discrete lines of dye could be allowed to seep into the laminar boundary layer 
by masking the spanwise slot with a 32 cm long strip of electrical tape, in which thirty 
longitudinal slots, 1 cm apart and 0.5 ern long, were cut with a surgical knife. The 
resulting dyelines were less than 0.5 mm wide near the trailing edge of the plate. 

2.4. Hot-jilm probes 

Miniature hot-film probes (Thermo Systems Inc., Model 1260) were used in the 
present investigation to measure the instantaneous longitudinal velocity before, 
during and after deceleration. The probe diameter was 0.025 mm and its sensing 
length was 0.25 mm. The probe support was 0.9 mm diameter and 32 mm long. To 
obtain a velocity profile, a five-probe traverse powered with a stepping motor 
controlled through an Apple-I1 microcomputer was used. For data acquisition and 
analyses, NOVA 800 and Prime 750 minicomputers were used. 
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3. Analyses 

3.1.1. Basic state : the unsteady boundary layer 

3.1. Theoretical considerations 

30 1 

The flow that initially becomes unstable is an unsteady boundary layer caused by 
plate deceleration. The initial and final states are Blasius layers. Hence one must solve 
(Rosenhead 1963 ; Schlichting 1968) 

$hx(x,O,t) = 0 (0 < 2 < 1 ,  t 2 O) ,  ( 1  c )  

$ (x ,Y , t )=$B(x ,Y )  ( o < x < 1 ,  t < 0 ,  y > o ) .  (1 e )  

Equation (1  a )  is the non-dimensional longitudinal momentum equation, with the 
familiar boundary-layer approximations applied. I n  this equation the downstream 
coordinate x is non-dimensionalized by L,  the normal coordinate y by L/&, the time 
t by LIU,, and the stream function $ by Uo L i d ,  where the Reynolds number 
R = U, Llv.  Here Uw(t)  is the speed history of the plate, $B signifies the stream 
function of the Blasius solution prior to deceleration. The unsteady term in ( 1  a )  makes 
the boundary layer non-similar. 

The unsteady boundary-layer solution of system ( 1 )  

$ = $ h Y >  t )  ( 2 )  

is of a combined Blasius-Rayleigh type (Stewartson 1951). 

3.1.2. Linear stability analysis for locally parallel $ow 

The onset of shear instabilities is obtained by linear stability analysis of the flow 
(2). Here 11. is unsteady, but we shall only examine the 'quasi-steady' stability 
problem in which the instantaneous profiles 

(3) 

are treated as steady parallel flows with the Orr-Sommerfeld equation. Such an 
approximation is valid if the time rate of change of $ (measured by a viscous diffusion 
time) is slow compared with the rate of growth of disturbances of $, (measured by 
a convection time). The validity of this approximation will be discussed at the end 
of 34.3. The following Orr-Sommerfeld system defines a critical value of R8* for each 
profile (parameterized by to) : 

@s = 9s(x ,  y; to) = $(2, y, t = to) 

( a U ( y ) - w )  (D2-a2)q5-a-# , 
d2U dY2 1 

where we have written the normal modes as follows: 
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Here a is the downstream wavenumber and w is the complex frequency; D = d/dy, 
and R is related to the standard displacement-thickness Reynolds number R,, by 

Given that we have used the quasi-steady assumption, Squire’s theorem applies 
and allows us to  confine our attention to  two-dimensional disturbances only. This 
is reflected in the form ( 5 ) .  

There is a ‘most-dangerous’ profile that corresponds to to = tot; where tnc is a 
measure of the time delay between deceleration and the appearance of the first 
two-dimensional instability. Presumably the instability is due to the inflexional 
nature of the profile. Here the point of inflexion at t = 0 is a t  the wall and moves 
outward on a diffusion timescale. I ts  location is y = yIp; if yIp is too small, viscous 
effects stabilize the profile. If yIp is too large, the inflexion point is in a region where 
U is very small, so the instability is not important. The ‘most-dangerous’ profile 
corresponds to an intermcdiate value of yIp and hence of t o .  

3.2. Numerical methods 

A code was developed to solve the unsteady boundary-layer equation (1) as follows. 
First, the flow variables are expanded in mapped Chebyshev polynomial expansions. 
Thus the variable y is mapped to a new variable Z using 

( - l < Z < i ) ,  
1+z 

y = hS1- 
S,-Z 

where S,  and S,  arc suitable scale parameters. In  terms of 2, y-derivatives take the 
form : 

(9) 
i3F (S,-2)2 i3F - - ay sl(l+s,)a’ 

Secondly, the various functions are expanded in Chebyshev-polynomial series 
in 2:  

Here the nth Chebyshev polynomial Tn(Z) is defined by 

Tn(Z) = cos (n  arccos Z), 

for all non-negative integers n (see e.g. Fox & Parker 
T,(Z) = 1 ,  Tl(Z) = 2, T,(Z)  = 2 2 , -  1 .  Also, if F ( Z )  is represented as in (lo), then 

(11) 

1968). Some examples are 

with f/&-f2!l = 2nfn (n  > 1 ) .  

Thirdly, the boundary-layer equation is solved by discretizing x and t using 
Crank-Nicolson implicit space and time differencing, in which the difference 
approximations 

> (14) 

(15) 

F [ ( k +  1 )  At]-F(kAt)  - - M,,,,, * t  At 

- F[(i+ 1 )  AX] - FhjAx) (3,,+,, A 5  - Ax 
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are used. At the centred points (i + t )  Ax and ( k  + i) A t ,  these difference approximations 
are second-order accurate in both x and t .  The fact that (14) and (15) involve functions 
a t  the discrete points (i+ 1) Ax and ( k  + 1) A t  implies that implicit equations must be 
solved for the dependent variables. These implicit equations arc set up using the 
Chebyshev derivative matrix operator D defined by 

where Zj are the Chebyshev collocation points : 

XJ. zj = cos-. 
N 

The resulting equation for the stream function is nonlinear. This nonlinear 
equation is solved by quasi-linearization (Newton's method). The resulting iterative 
scheme is expressible in terms of the operator (matrix) C, defined by 

1 1 
2At 2Ax 

C -D--[Y$'(xj, t k + l )  D+XY(xj+,, t k )  

1 
+ ~ [ Y y y ( x j j t k ) +  Y y y ( x j + l , t k ) +  y y y ( x j + l , t k + l ) +  y$$(xj, t k + i ) l ,  (18) 

as 
C w * + ' ) ( x j >  t k + l ) -  W*)@j> t k + d  

1 = t k + l ) +  Yy(xj+1, t k + l ) -  Y y ( x j J k ) -  u l , ( x j + l , t k ) l -  2 A t  

+ [ y y ( x j + l ,  td2+ Yy(xj+l? h+A2- YY(X j>  M2- Wp(x j ,  t k + l Y  

- S ( v T j + l J k ) +  ' Y ( x j + l > t k + l ) -  w q > t k ) -  Y(*)(qA+1)) 
1 

x (~yy(xj+l?tk)+ Y y y ( x j J k ) +  y y y ( x j + l >  t k + l ) +  ygcxj, t k + l ) ) l =  

+ !qhy(xj, h+l) -$( luyyy(x j+l j  t k )  + YYYY@j, t k )  + yyy, 

+ ( " j + l J k + l ) +  YJlgy(XjJk+J)}.  (19) 

Here Y ( x ,  t )  is the converged value of W*)(x, t )  a t  each discrete point ( x j ,  t k ) .  Typically, 
only a few iterations are necessary to converge. The advantage of this method is that 
it is unconditionally stable. 

At the inflow location xo Blasius flow is imposed. The Blasius equation is solved 
by the Chebyshev spectral scheme outlined above, also using Newton's method. 

At each downstream location, the flow field can be subjected to stability analysis 
using the Orr-Sommerfeld equation applied to the instantaneous velocity profile. The 
Orr-Sommerfeld system (4) is solved using Chebyshev-polynomial spectral methods 
on the same Z j  grid described above. The Chebyshev approximations permit 
simulations of very high accuracy. The Orr-Sommerfeld eigenvalue problem for 
temporally unstable mode is formulated as a generalized matrix eigenvalue problem 
of the form 

The eigenvalues of the resulting matrix problem are found by first reducing the 
problem (20)  (with a singular matrix B)  to a standard eigenvalue problem of the form 
AX = AX with scalar h and then finding the eigenvalues of this problem using the QR 

A 9  - hB9. (20)  
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method (Orszag 1971). If a good guess for an eigenvalue is available, then the code 
is able to avoid the global QR computation by using a local inverse Rayleigh iteration 
method to improve the guess. I n  all cases, the matrix method is designed so that the 
only unstable modes that are computed (either globally or locally) are approximations 
to physical modes; there are no spurious unstable modes. This feature is achieved by 
writing Orr-Sommerfeld equation in such a form that the numerical method would 
give a stable forward time-integration method for the linearized NavierStokes 
equations, so spurious unstable modes (that would lead to numerical instability in 
time) cannot be present. 

The code also has the optional features of obtaining the minimum critical Reynolds 
number at a given x-station and the neutral curve a t  the given x-station. These 
computations are done using variants of Newton’s method. Thus quick convergence 
of a guess to the neutral curve Im w = 0 is obtained by the iterative method : 

- 
w = @(a,, Rn), (21) 

aImw 
(Im w )  __ 

aa 

Once one point on the neutral curve is obtained, additional points on it are obtained 
by using as a first guess a point of the form: 

2 = a+q--Imw, a 
aR 

A a R =  R-q-Imo, 
aa 

which is obtained by moving along the tangent to  the neutral curve at the computed 
point. 

The minimum-critical-Reynolds-number program also uses Newton’s method. 
Here the iterative equations are 

an f l  = a,+Aa, (26) 

R,+, = R , + A R ,  (27 ) 
- 

(28 ) 
a a 

Imw(a,, R,)+-Imw(a,, En) Aa+--Imw(a,, En) AR = 0, 
aa i3R 

a - a  - a 2  
- Im w(a,, R,) + - Im @(a,, R,) Aa+--1m ~ ( a , ,  En) AR = 0. aa aa2 aa aR (29) 

In summary, the above-described code uses an unconditionally stable, spectral, 
accurate integration program for the solution of the time-dependent non-self-similar 
boundary-layer equations and both global and local spectral methods for the solution 
of the Orr-Sommerfeld equation. The code is reasonably robust, having significant 
difficulty only in cases when the flow reverses. 
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4. Results and discussion 
4.1. Flow-visualization results 

When the Blasius boundary layer was subjected to a uniform deceleration, a most 
interesting series of events was observed. Figure 2 represents six selected frames from 
a cine film of the observed instabilities. The left-hand side of each frame was a t  
x = 92 ern and the right-hand side was a t  x = 108 em. Fluorescent dye seeped into 
the laminar boundary layer through the spanwise slot, and was illuminated by a 
horizontal sheet of laser light at y = 0. The thickness of the laser sheet was about 
1 mm, several times the thickness of the undisturbed dye sheet. At a uniform speed 
of 40 cm/s the boundary layer was of Blasius type (see §4.2), and the dye sheet 
appeared smooth and uniform, as shown in figure 2 (a) .  The plate was then decelerated 
uniformly to a speed 30 cm/s in 5 s. Two seconds after the deceleration had started, 
the two-dimensional pattern depicted on figure 2 ( b )  was evident. The alternating 
bright and dark bands are consistent with the passing of two-dimensional vorticity 
waves. The wavelength of the disturbance was about 5-6 boundary-layer thicknesses 
6 as compared with a wavelength 86 for a Tollmien-Schlichting wave occurring in 
a non-decelerating Blasius boundary layer having the same Reynolds number. The 
wave phase speed relative to the plate was about 10 cm/s as compared with 14 cm/s 
for the corresponding Tollmien-Schlichting wave. The two-dimensional waves de- 
veloped a three-dimensional pattern as shown on figure 2 (c ) .  This pattern evolved 
into several hairpin vortices characterized by the bright triangles in figure 2 (d) .?  
Since the thickness of the sheet of light is larger than the thickness of the undisturbed 
dye, bright regions indicate lifting and accumulation of dye. The vortices appeared 
in several regular rows with a spanwise distance between two vortices of about 56 
(or about the same as the wavelength of the two-dimensional waves). The patterns 
continued to convect towards the trailing edge of the plate, and new ones appeared 
near the leading edge. Sideviews of the hairpin vortices indicated that their heads 
moved away from the wall. When the vortex head reached a height of about half 
a boundary-layer thickness i t  then burst into turbulence, as shown in figure 2 ( e ) .  The 
turbulent regions grew in size, as shown in figure 2 (f ), and adjacent bursts coalesced. 
Shortly afterward the dye pattern indicated that the flow over the entire plate was 
turbulent. 

The experiments were repeated with different initial velocities in the range 
2&60 cm/s and different deceleration rates in the range 1-60 cm/s2. The same 
sequence of events described above was observed in all runs. The lengthscales were 
not sensitive to the changes in the deceleration rate. However, the time to  complete 
the transition process was approximately inversely proportional to the deceleration 
rate. The stages of transition are summarized in the schematic depicted in figure 3. 

To gain more physical insight into the transition process in the decelerating 
boundary layer, the above-described sequence of events was also observed using 
discrete lines of dye embedded into the laminar boundary layer (52.3). Figure 4 shows 
six selected frames from a cine film of a typical run. Before decelerating the flat plate, 
the dyestreaks were parallel to the flow and remained on the plate surface. The plate 
was then decelerated from a speed 40 cm/s to a speed 30 cm/s in 5 s. A short time 
after the deceleration had started, the two-dimensional waves with their fronts 
perpendicular to the dye streaks appeared as alternating bright and dark bands on 
each streak as shown in figure 4 (a) .  The waves moved in the same direction, relative 

t Similar patterns were observed in the vibrating trip-wire experiments conducted by Perry, Lim 
& Teh (1981). 
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( b )  
FIGURE 2(a ,  b ) .  For caption see p. 308. 



Stability of the decelerating laminar boundary layer 

I) Flow 

(4 
FIGURE 2 ( c ,  d ) .  For caption see p. 308. 
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c f )  

FIGURE 2. Instabilities in a decelerating boundary layer. 



Stability of the decelerating laminar boundary layer 

Three-dimensional 
effects- Bursts 

5s 

Hairpin vortices 

waves 

309 

FIGURE 3. Schematic of transition events in a decelerating boundary layer. 

to the plate, as the ambient fluid. As the amplitude of these two-dimensional waves 
increased, as evident by t,he intensification of the contrast between the bright and 
dark bands, three-dimensionality developed, the dyelines began to show a waviness 
that has the same wavelength as that of the original two-dimensional waves (figures 
4b ,c ) .  Liepmann, Brown & Nosenchuck (1982), in observing a somewhat similar 
transition process initiated by a dynamic-heating technique, speculated that the 
waviness of the dyelines indicates a local development of longitudinal vorticity 
corresponding to the local warping of the initially parallel vortex lines. The dye 
became concentrated in regions that has been lifted away from the wall into a 
higher-velocity region of the boundary layer, thereby catching up with that released 
at  an earlier time. The transition process continued as before until the dye pattern 
indicated turbulent flow over the entire plate (figures 4d-f). 

4.2. Hot-jilm-probe measurements 

Miniature hot-film probes were used to measure the instantaneous longitudinal 
velocity in the decelerating boundary layer. The probes were moved with the plate, 
so that all velocities recorded were relative to the plate. Before the deceleration 
started, the boundary layer was of Blasius type, as shown on figure 5. The velocity 
profiles are plotted in the normal boundary-layer coordinates, where the ambient 
speed U,, is used as a velocity scale and the lengthscale (vx /U& is proportional to 
the laminar boundary-layer thickness 6. The Reynolds number for the two runs shown 
on figure 5 was lJ,x/v = 6.7 x lo5 (R8* = 1400). The solid line in the figure is a 
numerically generated Blasius profile. 

Figure 6 represents the instantaneous longitudinal velocity U(y) at  y / S  = 0.1, for 
a plate decelerated from an initial velocity U,  = 40 cm/s to a final velocity 
U ,  = 32 cm/s in a time t* = 4.6 s. The two arrows on the abscissa represent the 
starting and ending of deceleration. Initially, the flow is laminar and the velocity a t  
this particular elevation is proportional to the towing speed. A short timet after the 
deceleration starts, a sinusoidal instability is observed. Its peak-to-peak amplitude 
grows rapidly as shown in figure 6 .  Characteristic turbulent fluctuations are then 
observed, followed by a return to the laminar state. This occurs about 8 s after the 
plate has moved a t  its new constant towing speed. The turbulence, on the average, 

t The exact delay time between the start of deceleration and the onset of instability is difficult 
to determine, since the observed waves are infinitesimal a t  first. 
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FIGURE 6. Longitudinal velocity near the wall. 

brings high-speed fluid from outside the boundary layer to replace the low-speed fluid 
near the wall. A second probe a t  y/S = 1 recorded the signal shown in figure 7. It 
is seen that the turbulent fluctuations, on the average, bring low-speed fluid from 
the wall region to replace the high-speed fluid a t  y/S = 1 .  Close inspection of the 
instability waves near the wall and away from the wall reveals that the two 
wavetrains are out of phase, consistent with a spanwise vortical motion. 

The instability waves appeared from the visualization experiments to be two- 
dimensional initially. To check the ' degree ' of two-dimensionality of these vorticity 
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waves, three hot-film probes were located a t  y/S = 0.1 a t  the same streamwise 
position x / L  = 0.8, with a spanwise separation of two boundary-layer thicknesses. 
The plate was decelerated from 40 cm/s to  30 cm/s in 5 s. The streamwise-velocity 
signals from all three probes are plotted in figure 8. The waves are quite two- 
dimensional, although they have grown to relatively very large amplitude. Thus the 
development of a ' clean ' two-dimensional wave field during the initial stages of the 
transition process on the decelerating flat plate contrasts with the mixed two- 
dimensional/three-dimensional field for the fixed-plate experiment (Anders & 
Blackwelder 1979). 

The probe measurements are consistent with the qualitative visualization 
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FIGURE 9. Typical solution of the unsteady boundary-layer equation ; 
U, = 40 cm/s, U ,  = 22.5 cm/s, t* = 5 s .  

experiments. The ' relaminarization ' observed in the hot-film signal after the plate 
returns to a uniform speed does not show in the dye pictures, however, since the dye 
delineates the regions of the flow which have been marked by it, and a t  any instant 
of time it mainly gives information which is time-integrated over the history of the 
flow from the time of release of the dye. 

4.3. Numerical results 

The unsteady boundary-layer system (1) was solved by expanding the flow variables 
(dependence on y) in mapped Chebyshev-polynomial expansions, and discretizing x 
and t using Crank-Nicolson implicit space and time differencing. The code uses an 
unconditionally stable, spectral, accurate integration program for the solution of the 
time-dependent non-self-similar boundary-layer equations. The code is reasonably 
robust, having significant difficulty only in cases when the flow reverses so that the 
boundary-layer approximation is not va1id.t This occurred for deceleration rates 
larger than 4 cm/s2. 

The resulting velocity profiles for a typical deceleration rate are presented in figure 
9. Here the streamwise location was x = 160 cm, the initial and final speeds were 40 
and 22.5 cm/s respectively and the deceleration rate was 3.5 cm/s2. At t = 0 the 
velocity profile is of (inverted) Blasius type with the inflexion point a t  y = 0. The 
subsequent velocity profiles are inflexional, with the point of inflexion moving away 

t Flow reversal changes the parabolic partial differential equation to an elliptic one requiring 
both inflow and outflow boundary conditions. 
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FIQURE 10. Migration of the inflexion point during deceleration; U,  = 40 cm/s, t* = 5 s .  

from the wall on a viscous-diffusion timescale. At large times a new Blasius profile 
is established after the inflexional point returns back to the wall. 

The unsteady boundary-layer equation was solved for a range of initial and 
boundary conditions comparable to the experimental runs. Since the solution is 
non-self-similar, it  is obtained a t  selected streamwise locations. The migration of the 
inflexion point for seven different deceleration rates is shown in figure 10. The position 
y I P ( t )  of the inflexion point is normalized with the lengthscale L / a ,  and the time 
t is normalized with the deceleration time t* .  The initial speed was U,, = 40 cm/s, and 
the plate was decelerated in a time t* = 5 s to a final speed U ,  = 37.5, 35.0, 32.5, 
30.0, 27.5, 25.0 and 22.5 cm/s. The dip in the curve corresponding to a final speed 
U ,  = 22.5 cm/s is an indication of the incipient breakdown of the numerical 
simulation as mentioned above. The inflexion point migrates farther from the wall 
for high deceleration rate. It reaches a particular position above the wall in a time 
that is inversely proportional to the deceleration rate. This is consistent with the 
experimental observation that transition occurs sooner for higher deceleration rates, 
provided that there is a ‘most-dangerous’ location above the wall for the inflexion 
point. 

The flow field resulting from solving the unsteady boundary-layer equation was 
then subjected to stability analysis using the Orr-Sommerfeld equation applied to 
the instantaneous velocity profiles. The linear stability equation was solved using 
Chebyshev-polynomial spectral methods (Orszag 197 1 ) .  As expected, the inflexional 
velocity profiles yielded lower critical Reynolds numbers and larger growth rates in 
the unstable region as compared with the Blasius profile. The neutral-stability curves 
during a typical deceleration are depicted in figure 11 ( a ) ,  and enlarged in figure 11 ( b ) .  
The plate was decelerated from an initial speed 40 cm/s to a final speed 30 cm/s in 
5 s. At t = 0 the neutral stability curve for a Blasius profile resulted. As the plate 
decelerates, the inflexion point migrates away from the wall and the neutral-stability 

11 F L M  138 
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FIGURE 11. Neutral stability curves during deceleration ; 
U ,  = 40 cm/s, U ,  = 30 cm/s, t* = 5 s. 

curve moves toward the left, reaching its foremost left position a t  the end of the 
deceleration period ( t  = 5 s). Note that the inflexion point for this run reaches its 
maximum distance from the wall a t  t = 6.25 s (see figure 10). Finally, the inflexion 
point moves toward the wall and the neutral stability curve moves back toward the 
neutral curve of the Blasius profile. The unstable modes for the inflexional velocity 
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profiles tend to have larger wavenumbers (smaller wavelengths) as compared with 
the unstable modes for a Blasius velocity profile. 

The critical Reynolds number for a particular velocity profile is the smallest value 
of Reynolds number for which an unstable eigenmode exists. The behaviour of the 
critical Reynolds number for seven different deceleration rates is shown in figure 12. 
The critical Reynolds number R, is normalized with the critical Reynolds number 
for a Blasius velocity profile (RclBlasius = 520), and the time t is normalized with the 
deceleration time t*. The plate was decelerated from an initial speed U,, = 40 cm/s 
to a final speed U ,  = 37.5, 35.0, 32.5,30.0,27.5,25.0 or 22.5 cm/s in a time t* = 5 s. 
The critical Reynolds number decreases with time, then tends back to the Blasius 
value as the inflexion point migrates back toward the wall. The lowest critical 
Reynolds number decreases as the deceleration rate increases, and occurs at t / t* = 1. 
For a deceleration rate of 3.5 cm/s2, the lowest critical Reynolds number is about 
20 yo of the corresponding Blasius value. 

The critical Reynolds number indicates qualitatively the ‘degree ’ of instability for 
a particular experimental condition, where the actual Reynolds number usually far 
exceeds the critical one. For a certain decelerating boundary layer, the Reynolds 
number changes with time at a prescribed streamwise location on the plate. Of 
particular interest to the experiment is then to determine, a t  a particular location 
on the plate, the most-unstable mode at each instant of time. Vertical scans of the 
stability diagrams were conducted at the experimental Reynolds number a t  
x = 160 cm, corresponding to a typical observation station. The results are depicted 
in figures 13-16. 

The imaginary part of the eigenvalue wi indicates the exponential growth (or 
damping) of the disturbance amplitude. Figure 13 shows the growth rate wi versus 
wavelength A( = 27c/a) for the unstable modes as a plate is decelerated from 40 cm/s 
to 30 cm/s in 5 s. It is seen that, for each velocity profile, there exists a ‘most- 

11-2 
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FIGURE 13. Plots of growth rate vs. wavelength for the unstable modes; 
U, = 40 cm/s, U ,  = 30 cm/s, t* = 5 s.  
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dangerous ’ wavelength corresponding to the maximum growth rate. As time 
increases, this most-dangerous wavelength decreases slightly. This is consistent with 
the experimental observation ($4.1) that the observed wavelength in the present 
decelerating-plate experiment is shorter than the Tollmein-Schlichting wave in a 
Blasius boundary layer. In  particular, a t  t = 5 s, the most-dangerous wavelength is 
about 6.5 cm, whereas at t = 0 it is 8 cm. The computations were repeated for a plate 
decelerated from 40cm/s to  25cm/s and 35 cm/s in 5s .  The most dangerous 
wavelength a t  the end of the deceleration period varied in the range 5-7 cm, 
decreasing as the deceleration rate increased. This relative insensitivity of the 
lengthscale to changing the deceleration rate was observed in the flow-visualization 
experiments ($4.1). 

Unlike the wavelength, the growth rate of the disturbance depends strongly on the 
deceleration rate. The maximum growth rate during deceleration for all three 
deceleration rates (1 ,  2 and 3 cm/s2) is shown in figure 14. It increases as the 
deceleration takes place, reaching a maximum at the end of the deceleration period 
( t  = 5 s), then declines moving back towards the Blasius value. At a particular time 
during the deceleration, the growth rate increases as the deceleration rate increases. 
At the end of the deceleration period, the maximum growth rate for a plate 
decelerated to  a final speed U ,  = 25, 30 and 35 cm/s is respectively about 5, 4 and 
2 times that for a Blasius velocity profile. 

The real part of the eigenvalue w, is proportional to the phase velocity of the 
two-dimensional disturbance cp( = @,/a). Figure 15 shows the phase velocity versus 
wavelength for the unstable modes for different times during a deceleration from 
40 cm/s to 30 cm/s in 5 s. For a particular wavelength, the phase velocity decreases 
as the plate is decelerated, reaching a minimum a t  the end of the deceleration period. 
The phase velocity for the most-amplified disturbance during deceleration is shown 
in figure 16 for three deceleration rates 1, 2 and 3 cm/s2. Consistent with the 
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flow-visualization results, the phase velocity for the inflexional velocity profiles is less 
than that for the Blasius boundary layer. For a plate decelerated to a final speed 25, 
30 and 35 cm/s and at the end of the deceleration period (t  = 5 s), the phase velocity 
for the most-amplified disturbance is respectively 63,74 and 87 yo of that for a Blasius 
velocity profile. 
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FIGURE 16. Phase velocity of most-amplified disturbance during 
deceleration; U,, = 40 cm/s, t* = 5 s .  

The full decelerating boundary layer of ( 2 )  grows spatially in x and evolves in time 
t .  In  the above analysis we have assumed that the stability characteristics can be 
determined from velocity profiles that are locally parallel and quasi-steady. The 
locally parallel assumption has been discussed thoroughly by Saric & Nayfeh (1975). 
We now discuss the quasi-steady assumption. 

For t + O  and t - t  00, the local velocity profiles are of Blasius type so that the upper 
and lower branches of the neutral curves close as R,,+ CO, consistent with these 
profiles being stable by inviscid theory. Thus, forjxed a&* consider raising R,, from 
zero. The flow is stable below the neutral curve and is unstable inside the stability 
loop. The disturbances attain (numerically small) maximum growth rates inside the 
loop but for R,, large enough the flow is again stable. On the other hand, local velocity 
profiles corresponding to intermediate times t have inflexion points. Their quasi-steady 
neutral curves, shown in figure 11, are open to infinity since these profiles are unstable 
by inviscid theory. We again consider raising R,, for a&*fixed. The flow is stable below 
the neutral curve and becomes unstable inside the stability loop. However, the growth 
rates of the disturbances increase continuously as R,, + CO, the inviscid values being 
substantial. The quasi-steady theory should correctly describe this region since the 
growth rates can be large compared with the rate of change of the basic unsteady 
boundary layer. In  particular this theory should give the structure of the upper and 
lower branches. As R,, is lowered, the description of these branches should begin to 
deteriorate, the poorest approximation occurring a t  the neutral curve where the 
predicted growth rates are zero (Davis 1976). The growth rates shown in figure 13 
correspond to a vertical scan of figure 11 in that they are taken a t  fixed R8,. Since 
R8, is only slightly supercritical, the maximum growth rates shown are numerically 
small (though still much larger than those of Blasius layers). The rationale of the 
present work lies in the observation that the quasi-steady theory should be good for 
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large R,, and m a y  be qualitatively useful a t  smaller R8,. The fact that the predictions 
of the theory and the observations of the experiment are in good qualitative agree- 
ment supports our description of the mechanics of the early part of the transition 
process for the decelerating boundary layer. 

5. Concluding remarks 
The stability of the decelerating laminar boundary layer was investigated exper- 

imentally and numerically. The experiments were conducted in an 18 m towing tank, 
using a flat-plate geometry. Flow-visualization and probe-measurement experiments 
were conducted. The flow field was visualized using fluorescent dyes and sheets of 
argon laser light. The instantaneous longitudinal velocity was measured using an 
array of miniature hot-film probes. 

A Blasius boundary layer subjected to  uniform deceleration underwent a well- 
defined route to  complete transition. The visualization experiments revealed the 
onset of two-dimensional waves that appeared after the deceleration had started, 
three-dimensionality was then apparent and led to the formation of hairpin vortices 
that lifted away from the wall and burst into turbulence. 

The formation and growth of the vorticity waves in the decelerating laminar 
boundary layer were also observed using hot-film probes. The probes were moved with 
the plate, and indicated high-speed (relative to the plate) fluid coming from the outer 
parts of the ambient fluid towards the wall region. The probes also indicated a return 
to the laminar state after the deceleration ceased. The probe measurements indicated 
the ‘ degree ’ of two-dimensionality of the vorticity waves observed in the decelerating- 
plate experiment. The waves were truly two-dimensional ; and that suggests the study 
of their instability in order to determine the mechanism and characteristics of the 
development of three-dimensionality. If there is a well-defined transition from 
laminar two-dimensional waves to laminar three-dimensional waves through an 
instability process, one has identified a major link in the transition process. 

The unsteady boundary-layer equations were solved numerically to generate 
instantaneous velocity profiles for a range of boundary and initial conditions. The 
resulting velocity profiles were inflexional, with the inflexion point initially at the 
wall, moving upward on a diffusion timescale and finally going back t o  the wall. The 
unsteady flow field was subjected to stability analysis using the Orr-Sommerfeld 
equation applied to the instantaneous, locally parallel velocity fields. The generalized 
matrix eigenvalue problem was solved using Chebyshev-polynomial spectral methods 
(QR method). 

For profiles at a given station x = xo, the stability calculation shows that the 
inflexional case has smaller wavelength, smaller phase speed and lower critical 
Reynolds number than the corresponding Blasius profile. All these trends are 
consistent with the observations and measurements made. This gives us confidence 
that the mechanics of the initial instability is well understood. However, the observed 
appearance of two-dimensional instabilities (say in a 5 s deceleration run) occurs 
earlier in the deceleration history (e.g. a t  t x 2 s) than one would predict from the 
‘ most-dangerous ’ profile obtained from the stability calculations (for which one 
would have t z 5 s ) .  I n  this calculation we used profiles consistent with the measure- 
ment station a t  x = xo. Although one cannot rule out nonlinear effects, the more 
likely reason for such ‘ earlier’ instability is the non-self-similarity of the decelerating 
boundary layer. Self-similarity of the flow implies that profiles a t  all stations are 
‘equivalent ’ in terms of stability characteristics. When the flow is not self-similar, 
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the profiles a t  different stations are not equivalent, each profile needs to be examined 
separately and the ' most-dangerous ' station selected. The early appearance of 
instabilities in the present observations suggests that there are more-unstable profiles 
a t  neighbouring stations whose instabilities propagate to the observation station and 
are seen before the local profile itself becomes unstable. 

In summary then we have both flow visualization and point measurements for the 
instability and transition processes of flows on decelerating plates. We have obtained 
theoretical descriptions of the unsteady boundary layer and its instability to 
two-dimensional laminar waves. These give a consistent picture of the early steps of 
the transition process. 

The work on the stability of decelerating laminar boundary layers is a step toward 
understanding the more complicated problem of the effects of acceleration or 
deceleration on turbulent boundary layers. This problem has obvious relevance in 
accelerating or decelerating vehicles, vehiclesexperiencing turn and other manoeuvres, 
rotating propellers, and many other practical situations. 

On a more basic side, the deceleration experiment offers a convenient way to 
modulate laminar and turbulent boundary layers; in a way analogous to using 
pressure gradient, heating or roughness to help determine the exact nature of the 
apparent analogies between the different transition events in a laminar boundary 
layer and the intermittent events that characterize fully developed turbulent 
boundary layers ; namely the bursting cycle. 
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